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Preface

The RAND Corporation has a long history of research on intelligent systems. Since the 
1950s, with work on chess-playing computers and the Logic Theory Machine, RAND 
has produced objective, evidence-based research to help inform how society can har-
ness the benefits and manage the risks of intelligent, transformative technologies. 
RAND’s work on autonomous and automated vehicles builds on this firm foundation. 
The 2009 article “Liability and Regulation of Autonomous Vehicle Technologies” and 
the flagship report Autonomous Vehicle Technology: A Guide for Policymakers in 2014 
(revised in 2016) examined the policy landscape surrounding these technologies. As 
the technology nears readiness, policymakers today face pressing questions about how 
the safety of highly automated vehicles can be determined and how safe they should be 
before they are on the road for consumer use. The 2016 report Driving to Safety: How 
Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? 
addressed the former question, showing that test-driving is not a feasible way to prove 
the performance of such vehicles prior to deployment. This 2017 study directly informs 
the latter question by assessing safety outcomes under different policies governing the 
introduction of highly automated vehicles. It is complemented by the report RAND 
Model of Automated Vehicle Safety (MAVS): Model Documentation, which describes in 
detail the model used for the analysis described in this report.

RAND Science, Technology, and Policy

This research was conducted in the RAND Science, Technology, and Policy program, 
which focuses primarily on the role of scientific development and technological inno-
vation in human behavior, global and regional decisionmaking as it relates to science 
and technology, and the concurrent effects that science and technology have on policy 
analysis and policy choices. 

This program is part of RAND Justice, Infrastructure, and Environment, a divi-
sion of the RAND Corporation dedicated to improving policy- and decisionmaking 
in a wide range of policy domains, including civil and criminal justice, infrastructure 
development and financing, environmental policy, transportation planning and tech-
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nology, immigration and border protection, public and occupational safety, energy 
policy, science and innovation policy, space, and telecommunications.

During the development of this report and at the time of publication, co-author 
Nidhi Kalra’s spouse served as co-founder and president of Nuro, a machine-learning 
and robotics start-up company engaged in autonomous vehicle development. He previ-
ously served as a principal engineer for Google’s driverless car project. Neither Kalra’s 
spouse nor the companies he has worked for had any influence on this report.

Questions or comments about this report should be sent to the project leader, 
Nidhi Kalra (Nidhi_Kalra@rand.org). For more information about RAND Sci-
ence, Technology, and Policy, see www.rand.org/jie/stp or contact the director at  
stp@rand.org.

RAND Ventures

RAND is a research organization that develops solutions to public policy challenges 
to help make communities throughout the world safer and more secure, healthier 
and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public 
interest.

RAND Ventures is a vehicle for investing in policy solutions. Philanthropic con-
tributions support our ability to take the long view, tackle tough and often- controversial 
topics, and share our findings in innovative and compelling ways. RAND’s research 
findings and recommendations are based on data and evidence, and therefore do not 
necessarily reflect the policy preferences or interests of its clients, donors, or supporters.

This venture was made possible, in part, by the Zwick Impact Fund. Charles 
Zwick—a researcher at RAND from 1956 to 1965 who later served as both a trustee 
and an advisory trustee—presented RAND Ventures with $1 million and the charge 
to take on new and emerging policy challenges and to support top talent in their 
focus on these issues. Each year, RAND’s president draws on this generous gift to help 
RAND research and outreach teams extend the impact of completed research.

Support for this project is also provided, in part, by the income earned on client-
funded research, and by the generous contributions of the RAND Justice, Infrastruc-
ture, and Environment Advisory Board.

mailto:Nidhi_Kalra@rand.org
http://www.rand.org/jie/stp
mailto:stp@rand.org
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Summary

Many are looking to highly automated vehicles (HAVs)—vehicles that drive themselves 
some or all of the time—to mitigate the public health crisis posed by motor vehicle 
crashes. But a key question for the transportation industry, policymakers, and the 
public is how safe HAVs should be before they are allowed on the road for consumer 
use. From a utilitarian standpoint, it seems sensible that HAVs should be allowed on 
U.S. roads once they are judged safer than the average human driver so that the number 
of lives lost to road fatalities can begin to be reduced as soon as possible. Yet, under 
such a policy, HAVs would still cause many crashes, injuries, and fatalities—albeit 
fewer than their human counterparts. This may not be acceptable to society, and some 
argue that the technology should be significantly safer or even nearly perfect before 
HAVs are allowed on the road. Yet waiting for HAVs that are many times safer than 
human drivers misses opportunities to save lives. It is the very definition of allowing 
perfect to be the enemy of good.

The lack of consensus on the timing of HAV introduction reflects different values 
and beliefs when it comes to humans versus machines, but these values and beliefs can 
be informed by science and evidence. In this report, we seek to provide such evidence 
by addressing the question of how safe HAVs should be before they are introduced. We 
used the RAND Model of Automated Vehicle Safety (MAVS) (Kalra and Groves, 2017) 
to compare road fatalities over several decades under (1) a policy that allows HAVs to 
be deployed for consumer use when their safety performance is just 10 percent better 
than that of the average human driver (we call this option Improve10) and (2) a policy 
that waits to deploy HAVs only once their safety performance is 75 percent or 90 per-
cent better than that of the average human driver (we call these options Improve75 and 
Improve90, respectively). However, accurately predicting safety outcomes is fraught with 
complications because the factors that will govern road safety in the coming decades are 
impossible to predict given the disruptive nature of the technology. Therefore, we use 
methods for decisionmaking under deep uncertainty—specifically, Robust Decision 
Making—to evaluate each policy across an ensemble of hundreds of possible future 
conditions and use the results to ask and answer three questions.

First, under what conditions are more lives saved by each policy in the short term 
and the long term, and how much are those savings? We find that, in the short term 
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(over 15 years), more lives are cumulatively saved under the less stringent Improve10 
policy than the more stringent Improve75 or Improve90 policies in nearly all condi-
tions, and those savings can be significant—tens of thousands to hundreds of thousands 
of lives. The savings are greatest when HAVs under Improve10 are adopted  rapidly. An 
Improve75 or Improve90 policy saves more lives only when HAVs introduced under 
Improve10 lead to a large increase in vehicle miles traveled that is not offset by a corre-
spondingly rapid reduction in the HAV fatality rate. However, even under these condi-
tions, the short-term life savings under the more stringent policies are relatively small 
(at most, approximately 3,000 lives cumulatively) and disappear over time as HAV 
fatality rates continue to improve under an Improve10 policy. 

In the long term (over 30 years), more lives are cumulatively saved under an 
Improve10 policy than an Improve75 or Improve90 policy under all combinations 
of conditions we explored, and those savings can be very large—in some cases, more 
than half a million lives. The savings are largest when the introduction of HAVs under 
Improve75 or Improve90 is significantly delayed relative to the introduction under 
Improve10 because (1) the miles of real-world driving that it takes to realize significant 
HAV safety improvements is large and (2) the same improvement cannot be achieved 
equally quickly in laboratory or simulation settings. Savings are smallest when the 
opposite conditions hold.

Second, what does the evidence suggest about the conditions that lead to small 
costs from waiting for technology that is many times safer than human drivers? There 
is little reason to believe that improvement in HAV safety performance will be fast and 
can occur without widespread deployment, given the years already dedicated to HAV 
development and given that real-world driving is key to improving the technology. 
Indeed, there is good reason to believe that reaching significant safety improvements 
may take a long time and may be difficult prior to deployment.

Third, what does this imply for policies governing the introduction of HAVs for 
consumer use? In a utilitarian society, our findings would imply that policymakers 
should allow and developers should deploy HAVs when their safety performance is 
better than that of the average human driver. However, we do not live in a utilitarian 
society, and a potentially negative social response to HAV crashes may have profound 
implications for the technology. Instead, our findings suggest that society—including 
the public, policymakers, the judicial system, and the transportation industry—must 
balance the incidence of crashes from HAVs and non-HAVs with the social acceptabil-
ity of each. The evidence in this report can help stakeholders find a middle ground of 
HAV performance requirements that may prove to save the most lives overall.
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CHAPTER ONE

Introduction

Motor vehicle crashes are a public health crisis in the United States and around the 
world. In 2015, 35,092 people lost their lives in such crashes in the United States, 
an increase of 7.2 percent from 2014, and 2.44 million were injured, an increase of 
4.5 percent from 2014 (National Highway Traffic Safety Administration [NHTSA], 
2016a). And 2016 was even deadlier—with 37,461 fatalities (NHTSA, 2017). U.S. 
motor vehicle crashes can pose economic and social costs of more than $800 billion in 
a single year (Blincoe et al., 2015). Moreover, more than 90 percent of crashes involve 
driver-related errors (NHTSA, 2015; Dingus et al., 2016), such as driving too fast 
and misjudging other drivers’ behaviors, as well as distraction, fatigue, and alcohol 
impairment. 

Many are looking to highly automated vehicles (HAVs)—vehicles that drive them-
selves some or all of the time—to mitigate this crisis.1 Such vehicles have the potential 
to eliminate many of the mistakes that human drivers routinely make (Anderson et al., 
2016; Fagnant and Kockelman, 2015).2 To begin with, HAVs are never drunk, dis-
tracted, or tired; these factors are involved in 29 percent, 10 percent, and 2.5 percent 
of all fatal crashes, respectively (NHTSA, 2016c; NHTSA, 2016d; NHTSA, 2011).3 
Their performance may also be better than human drivers because of better perception 
(e.g., no blind spots), better decisionmaking (e.g., more-accurate planning of complex 
driving maneuvers, such as lane changes at high speeds), and better execution (e.g., 
faster and more-precise control of steering, brakes, and acceleration). 

But there is recognition that these vehicles, too, may pose risks to safety. For 
instance, inclement weather (Kutila et al., 2016) and complex driving environments 

1 We use the term HAV to refer to vehicles that fall into Levels 3, 4, and 5 of SAE International (2016)’s auto-
mated vehicle taxonomy. We elaborate on this and other definitions and discuss differences in terminology in 
Chapter Two.
2 As we discuss in Chapter Two, vehicles that fall into SAE International’s Level 1 and Level 2 automation may 
also help avoid many crashes caused by human error. Chapter Three describes how we incorporate these changes 
in our analysis.
3 This does not mean that 41.5 percent of all fatal crashes are caused by these factors, because a crash may 
involve, but not be strictly caused by, one of these factors, and because more than one of these factors may be 
involved in a single crash.
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pose challenges for HAVs (Shladover, 2016), as well as for human drivers, and HAVs 
might perform worse than human drivers in some of these situations (Gomes, 2014). 
There is also the potential for HAVs to pose new and different crash risks, such as coor-
dinated or simultaneous crashes resulting from cyber attacks (Anderson et al., 2016; 
Petit and Shladover, 2015), or to suffer from hardware and software faults (Koopman 
and Wagner, 2017). 

Clearly, HAVs present significant potential benefits and risks; they may reduce 
familiar risks from human drivers while simultaneously introducing unfamiliar risks 
from machines. Thus, HAV safety is a principal concern for the transportation industry, 
policymakers, and the public.4 Assessing safety requires considering two issues: How 
should HAV safety be measured, and what threshold of safety should be required before 
HAVs are made publicly available? In essence, what test do HAVs have to take and what 
constitutes a passing grade? The answers to these questions would help policymakers set 
appropriate regulations, would enable the industry to develop appropriate tests for HAV 
performance, and would help the public have clearer expectations of HAV safety.

At this time, both questions remain unanswered. RAND research recently 
showed that the only proven method of testing safety—driving HAVs in real traffic 
conditions and observing their performance—requires too many miles of driving to 
be practical prior to widespread consumer use (Kalra and Paddock, 2016). Fortunately, 
there is much effort being put into developing and validating alternative methods, 
including accelerated testing on roads and in simulation (Zhao and Peng, 2017; Google 
Auto LLC, 2016) and testing for behavioral competency at closed courses and proving 
grounds (Nowakowski et al., 2017; U.S. Department of Transportation, 2017). Based 
in Germany, the Pegasus Project is a key effort to draw on and integrate these and other 
methods into a testing and validation framework (Lemmer, 2017).

Simultaneously, effort is needed to answer the second question of how safe HAVs 
should be before they are allowed on the road for consumer use. This question under-
pins much of the debate around how and when to introduce and use the technology so 
that the potential risks from HAVs are minimized and the benefits maximized. Poli-
cymakers in Congress, for example, are considering revising existing federal standards 
and regulations that govern traditional automobiles, which would affect how and when 
HAVs can be sold to consumers (U.S. Senate, 2017; Roose, 2017; Fraade-Blanar and 
Kalra, 2017). The HAV industry is concerned with the same question (Hsu, 2017)—
not only to meet potential regulatory changes but also to meet consumer expectations, 
to mitigate potential backlash from the public in the event of the inevitable crash, and 
to manage questions of liability. And, of course, consumers will need to decide whether 
they have enough confidence in the performance of HAVs to hop in, and many are not 
so sure (Abraham et al., 2017).

4 For instance, Congress has held many hearings on automated vehicles, and safety of automated vehicles is 
consistently a priority in statements from policymakers. See, for example, Walden (2017) and Collins (2016).
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From a utilitarian standpoint, it seems sensible that HAVs should be allowed on 
U.S. roads once they are judged safer than the average human driver so that the lives 
lost from road fatalities are reduced as soon as possible. Yet, under such a policy, HAVs 
would still cause many crashes, injuries, and fatalities—albeit fewer than their human 
counterparts. This may not be acceptable to society. A large body of research suggests 
that peoples’ willingness to accept technological risk is governed by factors related 
not only to the actual risk but also to other characteristics (Sjöberg, 2000; Slovic and 
Peters, 2006; Dietvorst, Simmons, and Massey, 2014). For example, risks are more 
acceptable when they are voluntary (which it may not be for the many road users who 
will have to share the road with HAVs) and if a person can exert control over the out-
comes (which is, by definition, not the case for higher levels of vehicle automation) 
(Starr, 1969; Fischhoff et al., 1978; Otway and von Winterfeldt, 1982; Slovic, 1987, 
2000; Dietvorst, Simmons, and Massey, 2016). 

There is also a view that humans accept mistakes from other humans because they 
have an empathy that is not felt for machines. As Gill Pratt of Toyota Research Institute 
observes, “Society tolerates a significant amount of human error on our roads. We are, 
after all, only human. On the other hand, we expect machines to perform much better. 
. . . Humans have shown nearly zero tolerance for injury or death caused by flaws in a 
machine” (Pratt, 2017). Yet waiting for nearly perfect HAVs may miss opportunities to 
save lives. It is the very definition of allowing perfect to be the enemy of good.

Moreover, real-world driving experience may be one of the most important tools 
for improving HAV safety and, by extension, road safety. This is because, unlike most 
humans, HAVs can learn from each other’s mistakes. When a human driver makes a 
mistake on the road, typically only that individual learns from that experience and 
potentially improves his or her driving habits. Other drivers are unaffected. This is not 
the case with HAVs. HAV developers use the driving experience of individual vehicles 
to improve the state of the art in HAV safety (Musk, 2015). The machine-learning 
algorithms that govern HAV perception, decisionmaking, and execution rely largely 
on driving experience to improve. Therefore, the more (and more-diverse) miles that 
HAVs drive, the more potential there is for improving the state of the art in their safety.

The lack of consensus on how safe HAVs should be before they are allowed on the 
road for consumer use reflects different values and beliefs when it comes to humans 
versus machines. But these values and beliefs can be informed by science and evidence. 
In this report, we seek to provide such evidence. We use the RAND Model of Auto-
mated Vehicle Safety (MAVS) (Kalra and Groves, 2017) to calculate and compare road 
fatalities under (1) a policy that allows HAVs to be deployed for consumer use when 
their safety performance is just 10 percent better than that of the average human driver 
(we call this option Improve10) and (2) a policy that waits to deploy HAVs only once 
their safety performance is either 75 percent or 90 percent better than that of the aver-
age human driver (we call these options Improve75 and Improve90, respectively). 
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We use MAVS to answer three important questions:

1. Under what conditions are more lives saved by each policy in the short term and 
the long term, and how much are those savings?

2. What does the evidence suggest about the conditions that lead to small costs 
from waiting for technology that is many times safer than human drivers?

3. What does this imply for policies governing the introduction of HAVs for con-
sumer use?

Importantly, the answers depend on deeply uncertain conditions that contribute 
to road fatalities, including when HAVs will be introduced to the marketplace, how 
quickly they will be adopted and diffused, how their safety performance will improve 
over time, and how the use and performance of non-HAVs will evolve. Therefore, rather 
than using the model to predict road fatalities under a single set of future conditions, 
we use methods for decisionmaking under deep uncertainty—specifically, Robust 
Decision Making (RDM) (Groves and Lempert; 2007; Lempert et al., 2003)—to esti-
mate road fatalities under a wide range of potential future conditions and policies for 
marketplace introduction. We then analyze these results to address the three questions. 

The remainder of this report is organized in four chapters. Chapter Two presents 
definitions of HAVs and non-HAVs, along with a review of the literature on projections 
of future road safety for such vehicles. Chapter Three presents our analytical method, 
and Chapter Four presents analytical results. Chapter Five describes the policy impli-
cations of these results and offers conclusions.
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CHAPTER TWO

Definitions and Prior Work

In this chapter, we define what we mean by an HAV and describe how future road 
safety with and without HAVs has been assessed in the literature.

What Is a Highly Automated Vehicle and What Is Not?

The 2016 SAE International taxonomy of driving automation, summarized in 
Table 2.1, describes six levels of automation.1 Common to Level 0 (no driving auto-
mation), Level 1 (driver assistance), and Level 2 (partial driving automation) is that 
the human behind the wheel is responsible for some or all of the dynamic driving 
task (DDT), even when driver assistance systems are engaged.2 Common to Level 
3 (conditional driving automation), Level 4 (high driving automation), and Level 5 
(full  driving automation) is that the vehicle is responsible for the entire DDT when 
the automated driving capabilities are engaged. As of 2017, no Level 3–5 vehicles are 
available for consumers to lease or purchase, but pilot tests are under way with trained 
safety drivers behind the wheel. Table 2.1 shows each level’s description taken directly 
from the SAE International taxonomy (in italics) and our simplified interpretation.

Consistent with Federal Automated Vehicles Policy (NHTSA, 2016b), we use the 
term HAV to refer to vehicles that conform to Levels 3, 4, or 5.3 We use the term non-
HAV to refer to vehicles that conform to Levels 0, 1, or 2.

1 Many terms have been coined to describe the variety of technologies that are transforming vehicles from 
human-driven to machine-driven, such as automated, autonomous, self-driving, and driverless vehicles. The terms 
are used differently in policy guidance, academic literature, and the media, and the SAE International (2016) 
taxonomy provides a useful discussion of their differences. In prior work (e.g., Anderson et al., 2016; Kalra and 
Paddock, 2016), RAND researchers have preferred the term autonomous vehicle, but we use the term highly auto-
mated vehicle here for greater consistency with federal policy (NHTSA, 2016b).
2 SAE International (2016) defines the DDT as “all of the real-time operational and tactical functions required 
to operate a vehicle in onroad traffic, excluding the strategic functions, such as trip scheduling and selection of 
destinations and waypoints.”
3 Note that in the SAE International taxonomy, the term highly automated would apply to Level 4 vehicles spe-
cifically, but the Federal Automated Vehicles Policy uses the term highly automated vehicle more broadly.
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Table 2.1
SAE International Levels of Driving Automation

Level Name Description

Driver performs part or all of the DDT (Non-HAVs)

0 No driving 
automation

The performance by the driver of the entire DDT, even when enhanced by active 
safety systems. 

The human driver is entirely responsible for driving, even if such features as 
active electronic stability control are available and engaged.

1 Driver 
assistance

The sustained and operational design domain (ODD)-specific execution by a 
driving automation system of either the lateral or the longitudinal vehicle 
motion control subtask of the DDT (but not both simultaneously) with the 
expectation that the driver performs the remainder of the DDT.a 

The human driver is entirely responsible for driving but may be assisted by a 
single feature that automates steering or acceleration, such as lane-keeping and 
adaptive cruise control, but not both.

2 Partial  
driving 
automation

The sustained and ODD-specific execution by a driving automation system of 
both the lateral and longitudinal vehicle motion control subtasks of the DDT 
with the expectation that the driver completes the object and event detection 
and response subtask and supervises the driving automation system.

The human driver is entirely responsible for driving but may be assisted by 
functions that automate both steering and acceleration, such as lane-keeping 
and adaptive cruise control; the human driver is responsible for monitoring the 
environment and intervening whenever needed. 

Automated driving system performs the entire DDT while engaged (HAVs)

3 Conditional 
driving 
automation

The sustained and ODD-specific performance by an [automated driving system 
(ADS)] of the entire DDT with the expectation that the DDT fallback-ready user 
is receptive to ADS-issued requests to intervene, as well as to DDT performance-
relevant system failures in other vehicle systems, and will respond appropriately.

The vehicle is entirely responsible for driving in certain conditions but may 
request rapid intervention from the human driver as needed.

4 High driving 
automation

The sustained and ODD-specific performance by an ADS of the entire DDT and 
DDT fallback without any expectation that a user will respond to a request to 
intervene.

The vehicle is entirely responsible for driving in certain conditions and will not 
request intervention from the human driver.

5 Full driving 
automation

The sustained and unconditional (i.e., not ODD-specific) performance by an ADS 
of the entire DDT and DDT fallback without any expectation that a user will 
respond to a request to intervene.

The vehicle is entirely responsible for driving under all conditions and will not 
request intervention from anyone in the vehicle. Such vehicles may have no 
occupants at all.

SOURCE: SAE International, 2016.

NOTE: Below each italicized description taken directly from the SAE International taxonomy (2016, 
Table 2) is our simplified interpretation.
a SAE International (2016) defines an ODD as “the specific conditions under which a given driving 
automation system or feature thereof is designed to function.”
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How Has Future Road Safety Been Assessed in the Literature?

There are many estimates of the benefits of different types of advanced driver assistance 
systems or crash avoidance systems, individually and in combination (Gordon et al., 
2010; Funke et al., 2011; Perez et al., 2011; Jermakian, 2011; Harper, Hendrickson, 
and Samaras, 2016). Vehicles equipped with these technologies are usually classified 
as having Level 1 or Level 2 automation according to SAE International’s taxonomy 
and are considered non-HAVs. As one example, Funke et al. (2011) summarizes the 
safety potential of four crash avoidance technologies as the product of the size of the 
crash problem in the entire U.S. fleet (e.g., the number of annual crashes related to 
lane departure) and the fraction of such crashes that could be mitigated by the technol-
ogy (e.g., from a lane departure warning system). There are also efforts to estimate the 
benefits of connected vehicle technologies, in which on-board applications use com-
munication with other vehicles or infrastructure to improve safety—for example, for 
coordinating vehicle movement through an intersection (Najm, Toma, and Brewer, 
2013; Eccles et al., 2012).

Rau, Yanagisawa, and Najm (2015) describes a method for identifying the types 
and potential number of current crashes that could be mitigated by technologies 
between Level 2 and Level 5 autonomy. Li and Kockelman (2016) draws on this meth-
odology to estimate the safety benefits of a variety of connected vehicle and Level 1 and 
Level 2 automated vehicle technologies, assuming widespread adoption of those tech-
nologies. Going a step further than prior work, Li and Kockelman (2016) estimates 
both the types and severity of crashes that could be avoided by each type of technology, 
as well as the economic benefit of those savings. In recognition of the uncertainty in 
the technology performance, the authors assess benefits under three scenarios of tech-
nology effectiveness.

There are fewer estimates of the safety benefits of HAVs, and there is no consensus 
yet among those estimates (Winkle, 2015). Fagnant and Kockelman (2015) calculate 
the societal benefits of Level 4 and Level 5 HAVs across a variety of benefit categories, 
including safety.4 Drawing on the findings of the National Motor Vehicle Crash Cau-
sation Survey, which found that human error accounts for 93 percent of today’s crashes 
(NHTSA, 2008), Fagnant and Kockelman assume in their calculations that HAVs 
reduce crash and injury rates by 50 percent at the 10-percent market penetration rate 
and by 90 percent at the 90-percent market penetration rate. In contrast, the Casualty 
Actuarial Society’s Automated Vehicles Task Force recently evaluated the findings of 
the National Motor Vehicle Crash Causation Survey in the context of HAVs. The task 
force’s study found that HAVs could address about half of the accidents, while “49% of 
accidents contain at least one limiting factor that could disable [HAV] technology or 
reduce its effectiveness” (Casualty Actuarial Society, 2014). 

4 The paper does not explicitly define what levels of autonomy the authors include in their calculations, but we 
infer that they refer to Level 4 and Level 5 autonomy, not Level 3.
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This literature provides important insights into how different non-HAV and HAV 
technologies could mitigate today’s crashes. However, these insights have not yet been 
used to understand how safety effects might play out over time—because different 
technologies are adopted in different time frames, and the performance of the tech-
nologies changes as they are deployed. It is difficult to use these estimates to make such 
projections for two key reasons. First, the estimates generally focus on how technolo-
gies could mitigate the types of crashes that human drivers currently cause, but they 
overlook important ways in which new technologies could add to crashes. This could 
occur if technology erodes human drivers’ skills or attention, technology is vulnerable 
to cybersecurity failures that lead to new types of crashes, or HAVs simply perform 
worse than human drivers, even initially (Kalra, 2017).5 As the Casualty Actuarial 
Society notes, “The safety of automated vehicles should not be determined by today’s 
standards; things that cause accidents today may or may not cause accidents in an auto-
mated vehicle era” (2014, p. 1). New safety risks are difficult to anticipate, making the 
full effect of many new technologies deeply uncertain. 

Second, these existing estimates also compare the marginal benefits of a technol-
ogy with the safety performance of current vehicles and drivers. However, the benefit 
of a vehicle with a particular technology at some point in the future is more correctly 
estimated when compared with the performance of future vehicles without that tech-
nology at that same future time, rather than with vehicles in current conditions. 

The history of airbags illustrates these issues (Anderson et al., 2016; Houston 
and Richardson, 2000). When airbags were first introduced in the 1970s, they were 
designed to protect an unbelted adult male passenger and envisioned as an alternative 
rather than a supplement to seat belts, which were then used infrequently. Estimates 
of future safety benefits made at that time were based on this use case and ultimately 
proved to be overblown by an order of magnitude—in large part because, by the time 
airbags were widely deployed, seat belt use was also widespread, so the marginal ben-
efit of airbags was much less than anticipated. Moreover, while airbags still saved many 
lives, the force needed to protect an unbelted adult male injured and killed many pas-
sengers of smaller stature (such as women and children) who might have otherwise 
survived the crash had airbags not deployed. These crashes led to improvements in 
airbag technology but also showed that airbags introduced new crash risks even as they 
mitigated existing risks.

In sum, the long-term evolution of road safety is important to understand and yet 
complex, deeply uncertain, and difficult to predict. This work fills a gap in the existing 
literature by using a simple modeling platform to explore the safety impact of HAVs 
under different policies and conditions.

5 Complicating matters, as Kalra and Paddock (2016) argues, there is no currently accepted method of assessing 
the safety of HAVs with statistical confidence prior to making them available for widespread use. Therefore, it is 
possible that stakeholders may simply not know how safe the technology is.
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CHAPTER THREE

Methods

The short- and long-term safety outcomes of different HAV policies will depend on the 
evolution of many factors, such as use and safety of non-HAVs over time; the timing, 
rate, and extent of HAV adoption and diffusion throughout the fleet; and the initial 
safety of HAVs and how much and how quickly it improves. Accurately predicting 
safety outcomes is fraught with complications because such factors are deeply uncertain, 
meaning there is no consensus about how they will evolve and any prediction is likely 
to be wrong given the disruptive nature of the technology. Therefore, such predictions 
may ultimately not be helpful in determining which policy would lead to better safety 
outcomes. We therefore turn to methods for decisionmaking under deep uncertainty 
(Kalra et al., 2014)—specifically, RDM (Lempert, Popper, and Bankes, 2003; Groves 
and Lempert, 2007). 

The remainder of this chapter presents our methodology and experimental design 
in greater detail. We first provide an overview of RDM and then MAVS. Later, we 
define our policies and explain how we account for uncertainties that govern the per-
formance of each policy. 

Overview of Robust Decision Making

Quantitative analysis is often indispensable for making sound policy choices. Typi-
cally, these methods use a “predict-then-act” approach: Analysts assemble available 
evidence into best-estimate assumptions or predictions and then use models and tools 
to suggest the best strategy given these predictions. Such analyses are useful in answer-
ing the question, Which policy options best meet our goals given our beliefs about the 
future? These methods, which include probabilistic risk analysis, work well when the 
predictions are accurate and noncontroversial (Lempert, Popper, and Bankes, 2003; 
Kalra et al., 2014; Lempert and Kalra, 2011). 

However, disruptive technologies (such as HAVs), by definition, do not lend 
themselves to credible prediction-making. As noted, the short- and long-term safety 
outcomes of different HAV introduction policies will depend on the evolution of many 
deeply uncertain factors. Traditional methods prove brittle in the face of the deep 
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uncertainties. Disagreements about future predictions can lead to gridlock among 
stakeholders. Worse, decisions tailored to one set of assumptions often prove inad-
equate or even harmful if another future comes to pass.

Many methods have been developed over the past half-century to help policy-
makers manage deep uncertainties and make choices that are robust to the unpre-
dictable future. RDM, in particular, is designed to help manage deep uncertainty by 
helping develop policies that are robust—that is, that satisfy decisionmakers’ objectives 
in many plausible futures rather than being optimal in any single best estimate of the 
future (Lempert et al., 2013). 

RDM rests on a simple concept. Rather than using models and data to assess 
policies under a single set of assumptions, RDM runs models over hundreds or thou-
sands of different sets of assumptions to describe how plans perform in many  plausible 
conditions. Unlike, for example, Monte-Carlo analysis, which attaches probabili-
ties to those assumptions to estimate expected outcomes, RDM uses simulations to 
stress test strategies. RDM draws from both scenario planning and probabilistic risk 
 analysis to ask which policies reduce risk over which range of assumptions, inquiring, 
for example, what assumptions would need to be true for us to reject option A and 
instead choose option B. 

By embracing many plausible sets of assumptions or futures, RDM can help 
reduce overconfidence and the deleterious impacts of surprise, can systematically 
include imprecise information in the analysis, and can help decisionmakers and 
stakeholders who have differing expectations about the future nonetheless reach con-
sensus on action. In essence, RDM helps plan for the future without first predicting 
it. RDM has been applied to water resource management (Groves, Davis, et al., 2008; 
Groves, Fischbach, et al., 2013), flood risk management (Fischbach et al., 2017), ter-
rorism risk insurance (Dixon et al., 2007), energy investments (Popper et al., 2009), 
and other sectors.

In this analysis, we use RDM and MAVS (Kalra and Groves, 2017) to 

• generate a wide range of plausible future conditions that would shape HAV safety 
outcomes, without ascribing likelihoods to those futures

• assess fatalities over time under different HAV introduction policies across those 
futures

• identify the set of future conditions that lead to more life savings under each 
policy in the short term (2020–2035) and over the long term (2020–2050)

• assess the plausibility of those conditions to determine whether one policy is more 
robust—that is, more likely to yield life savings despite deep uncertainties. 

The results, which we discuss in Chapter Four, help inform whether it is better to 
wait for near-perfect performance before HAVs are allowed on the road for consumer 
use or better to deploy HAVs when their safety performance is only moderately better 
than that of the average human driver. 
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Overview of the Model and the Experimental Design

MAVS is a model that estimates traffic fatalities over time in a baseline future without 
HAVs and an alternative future with HAVs.1 The calculations are based on a variety of 
factors, including

• the change in safety performance of non-HAVs over time
• travel demand for non-HAVs over time
• the timing of HAV market introduction and the rate and level of diffusion and

use over time
• the safety performance of HAVs over time.

Figure 3.1 diagrams the key inputs and outputs of MAVS, including fatality rate,
year of introduction, and vehicle miles traveled (VMT), among others.

1  MAVS can be configured to evaluate crashes, injuries, property damage, economic costs, or other safety mea-
sures. For simplicity and because of the particular attention paid to road deaths, we measure safety by the number 
of fatalities and the fatality rate.

Figure 3.1
MAVS Inputs and Outputs

RAND RR2051-3.1

Inputs

VMT
1. Year-over-year VMT growth

among non-HAVs
2. Initial year of HAV

introduction
3. Years to full diffusion of 

HAVs (to the level specified 
by input 4)

4. Maximum percentage of
baseline non-HAV miles
that would be driven by
HAVs at full diffusion

5. Change in highly auto-
mated VMT due to HAV use

Fatality rate
6. Change in non-HAV fatality

rate in 50 years
7. Initial HAV fatality rate
8. Final HAV fatality rate
9. HAV miles needed to reach 

99% of final HAV fatality 
rate

10. Upgradeability of already
deployed HAVs

MAVS

Outputs

• VMT over time
• Fatality rates over time
• Annual and cumulative

fatalities over time
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By defining different combinations of input values, we use MAVS to model differ-
ent policies under many plausible future conditions. Table 3.1 summarizes the experi-
mental design used for this analysis. It lists each of the ten inputs to MAVS shown in 
Figure 3.1 (numbered for convenience) and notes how each is defined under the poli-
cies in our analysis. In this report, we define the benchmark fatality rate as the current 
fatality rate of human drivers in the United States (1.12 fatalities per 100 million miles 
in 2015; see NHTSA, 2016a).2

2 In October 2017, just prior to this report’s publication, NHTSA released traffic safety data for 2016 and 
revised estimates for 2015. NHTSA reports that, in 2016, the fatality rate increased still further to 1.18 fatalities 
per 100 million VMT from a (revised) rate of 1.15 fatalities per 100 million VMT in 2015 (NHTSA, 2017). The 
analysis in this report is based on the earlier 2015 estimate of 1.12 fatalities per 100 million VMT.

Table 3.1
Summary of the Experimental Design

MAVS Input Improve10 Policy
Improve75 and Improve90 

Policies

VMT

1. Year-over-year VMT growth among 
non-HAVs

Uncertain;  
0.4%–1.8%

2. Initial year of HAV introduction Uncertain; constant  
2020

Uncertain; affected by fatality 
rates in Improve10 and an 

uncertain delay of 0–15 years in 
the introduction of HAVs 

3. Years to full diffusion of HAVs (to 
the level specified by input 4)

Uncertain;
20–50 years

Uncertain; defined by an 
uncertain amount of accelerated 
diffusion relative to Improve10 

4. Maximum percentage of baseline 
non-HAV miles that would be 
driven by HAVs at full diffusion 

Uncertain;
50%–100%

5. Change in highly automated VMT 
due to HAV use

Uncertain; 
–50%–100%

Fatality rate

6. Change in non-HAV fatality rate 
in 50 years

Uncertain; 
50%–110% of the benchmark fatality rate

7. Initial HAV fatality rate Defined by policy as 90% of 
the benchmark fatality rate

Defined by policy as 25% 
(Improve75) or 10% (Improve90) 
of the benchmark fatality rate

8. Final HAV fatality rate Uncertain; constant, defined by initial fatality rates under 
Improve75 and Improve90

9. HAV miles needed to reach 99% 
of final HAV fatality rate

Uncertain; 100 million to 10 
trillion

Not applicable 

10. Upgradeability of already 
deployed HAVs

Uncertain; 0–1 Not applicable
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One MAVS input (input 7) defines the HAV policy, while most of the others are 
uncertain and govern how each policy may perform. For each uncertain input, we note 
in the table whether the input is treated as a constant (e.g., input 2), explored over the 
stated range (e.g., input 1), or defined by other factors and uncertainties (e.g., input 3 
under the Improve75 and Improve90 policies). 

Consistent with RDM, our experimental design includes a wide range of plausible 
values for the MAVS parameters that will shape HAV safety but does not ascribe like-
lihoods to any particular set of values or futures. Therefore, these ranges may include 
values that are not viewed as plausible by all stakeholders. However, the RDM method 
is not highly sensitive to extended ranges, because the analytics focuses on identifying 
thresholds that favor different policies rather than on finding optimal policies.

The next step in our analysis is to define 500 plausible futures.3 A future is a spe-
cific and unique combination of the uncertain, nonconstant inputs into MAVS, and 
we generate the ensemble using a Latin Hypercube sampling procedure.4 We evaluate 
the HAV introduction policies under each future and save the results in a database for 
analysis, as described in Chapter Four. The following sections elaborate on the intro-
duction policies and ranges of values used to represent the uncertainties and to generate 
the ensemble of case runs.

Defining Highly Automated Vehicle Introduction Policies

We have configured MAVs to examine the long-term safety outcomes of HAV policies 
that differ by the level of safety performance HAVs must attain before they are allowed 
on U.S. roads for consumer use. Therefore, each policy defines MAVS input 7 (initial 
HAV fatality rate). 

The first policy, Improve10, allows HAVs to be deployed once their fatality rate 
is one fatality per 100 million VMT, or 10 percent better than the benchmark rate 
(1.12 fatalities per 100 million miles, as noted earlier).5

The second policy we examined allows HAVs to be deployed only once their per-
formance is several times better than that of human drivers. We define two variations, 
given that it is uncertain how safe HAVs can ultimately become and how much toler-

3 The number of futures is arbitrary, but significantly fewer futures may lead to insufficient exploration of the 
experimental design space, while significantly more futures would not necessarily add more insight yet may be 
more difficult to calculate and visualize in the results.
4 A Latin Hypercube Sampling procedure ensures that all variables are sampled uniformly across their entire range 
and that the combinations of values across the variables are randomly selected (Saltelli, Chan, and Scott, 2000).
5 Our choice of a 10-percent improvement is arbitrary: Any technology that reduces fatality rates even slightly 
(e.g., 1 percent) relative to human drivers would be better than average. One practical reason to use a modest dif-
ference over a very small one, however, is that it becomes more feasible to detect and verify such a difference in 
performance (Kalra and Paddock, 2016).
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ance stakeholders have for imperfection. The first variation, Improve75, allows HAVs 
only once their fatality rate is 0.28 per 100 million VMT, representing a  75-percent 
improvement over the benchmark rate. The second variation, Improve90, is more strin-
gent, allowing HAVs only once their fatality rate is 0.11 fatalities per 100 million 
VMT, representing a 90-percent improvement over the benchmark rate. 

Accounting for Uncertainty in a Baseline Future Without Highly 
Automated Vehicles

MAVS first calculates annual VMT, annual fatality rates, and (from these factors) 
annual fatalities in a future that has no HAVs. This serves as a baseline from which a 
future with HAVs deviates. Annual VMT is calculated based on an uncertain year-over-
year growth in VMT (MAVS input 1 in Table 3.1). In its 2017 projections, the Federal 
Highway Administration (FHWA) forecasts that, from 2015 to 2045, total VMT could 
grow in the range of 0.66 percent to 0.89 percent annually (FWHA, 2017). The FHWA 
bounds are uncertain and have changed significantly year to year. In 2016, for example, 
the forecasted increase in VMT ranged from 0.53 percent to 0.65 percent, meaning that 
the high end of FHWA’s 2016 projection (0.65 percent) was lower than the low end of 
its 2017 projection (0.66 percent) (FHWA, 2016). The Energy Information Adminis-
tration’s Annual Energy Outlook has similar projections and variation across years. The 
2017 report projects a growth rate of 0.7 percent for light-duty vehicles out to 2050 and 
greater annual increases for commercial trucks (Energy Information Administration, 
2017a). In recent decades, the projections have ranged significantly, from 0.7-percent 
annual growth to 1.8-percent annual growth for certain periods (Energy Information 
Administration, 2006).6 This variability speaks to the deep uncertainty surrounding 
long-term future VMT. Based on this uncertainty and related literature, in our experi-
ments, we explore over a large range: 0.4 percent to 1.8 percent. 

The next uncertainty is the fatality rate among non-HAVs over time (MAVS 
input 6). While road fatality rates have declined significantly since the 1950s, there has 
been a plateau over the past decade and an increase in recent years (Bureau of Transpor-
tation Statistics, 2016). Based on the estimates of the safety benefits of driver assistance 
systems described in Chapter Two, we allow for up to a 50-percent decrease in the long-
term fatality rates of non-HAVs. However, it is also possible that fatality rates could 
increase if the safety benefit of these technologies is outpaced by a decline in driver 
attentiveness and skill (which will still be essential for non-HAV driving) or other mal-
adaptive behaviors (Milakis, van Arem, and van Wee, 2017). Therefore, we allow for a 
10-percent increase in non-HAV fatality rates relative to the benchmark rate.

6 These projections may include potential changes to VMT from HAV use, which we seek to exclude in the 
baseline. FHWA projects a range of growth rates in order to account for a variety of uncertainties, including 
future economic growth, vehicle use and ownership, and technology (FHWA, 2017).
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Accounting for Uncertainty Under an Improve10 Policy

MAVS next calculates HAV and non-HAV VMT and fatality rates in a future in which 
HAVs are introduced under an Improve10 policy (that is, HAVs are 10 percent safer 
than the average human driver). These calculations consider the diffusion of HAVs, 
represented over time as the percentage of VMT that ultimately would be attributed to 
HAVs and the time in which it would take to reach full diffusion (that is, some ultimate 
level of saturation throughout the fleet, as defined by input 4). 

Uncertainties Governing Highly Automated Vehicle Miles Traveled Under 
Improve10

Annual highly automated VMT under Improve10 first depends on timing: When will 
HAVs be introduced (MAVS input 2) and when will they be fully diffused through the 
fleet (MAVS input 3)? HAV introduction is uncertain because we do not know when 
HAVs will be safer than humans. For simplicity, we have chosen a near-term fixed year 
of introduction—2020—relative to which all outcomes in both policies are calculated. 
(We could have also chosen to call this year 0, but 2020 is more conceptually meaning-
ful and also consistent with statements from automakers about when they anticipate 
HAVs could hit the roads (Ross, 2017; Ford Motor Company, 2016). 

We also do not know when HAVs will reach full diffusion. If the diffusion of 
other automotive technology is any indication (Jutila, 1987; DeCicco, 2010; Highway 
Loss Data Institute, 2012), the full diffusion of HAVs will take at least a few decades 
(Litman, 2017; Bansal and Kockelman, 2017). There are some suggestions that it could 
be very fast, particularly in urban areas (Boston Consulting Group, 2017). To be inclu-
sive, we consider a range of 20–50 years to full diffusion under an Improve10 policy.

HAV VMT is secondly governed by the extent of HAV use, which we measure 
at the point of full diffusion. To begin with, some percentage of non-HAV driving 
in the baseline future will ultimately be replaced by HAVs (MAVS input 4). This is 
deeply uncertain, and we explore anywhere from 50 percent to 100 percent of baseline 
miles. (The miles that are not replaced define the VMT of non-HAVs.) HAVs are also 
expected by many to increase the demand for transportation by reducing its costs and 
by increasing opportunities for automotive travel for those who currently do not drive 
or use other modes (Anderson et al., 2016; Harper et al., 2016; U.S. Department of 
Energy, 2017). Zero-occupancy vehicles are a particular concern, as is an increase in 
VMT from delivery of goods. Yet, there could also be some decrease in VMT if shared 
HAVs in particular are widely used (Energy Information Administration, 2017b).

MAVS models a change in VMT as a result of HAV use (MAVS input 5). This 
input asks, for each mile of human driving that is replaced by highly automated driv-
ing, how large is the replaced mile? That is, how many highly automated miles replace 
the human-driven mile? For instance, HAVs may lead workers to accept longer com-
mutes because the driving time could be spent on other desired activities, such as read-
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ing or watching media. This could result in more miles traveled overall; for example, 
one human-driven mile could be replaced by 1.25 highly automated miles, reflecting 
a change of 25 percent in VMT as a result of HAVs. Alternatively, one human-driven 
mile could be replaced by 0.75 highly automated miles, reflecting a change of –25 per-
cent in VMT as a result of HAVs. Given the deep uncertainties, we consider a range 
of effect anywhere from –50 percent to 100 percent, reflecting a halving to a doubling 
of VMT. This range comfortably includes all of the projections of VMT change we 
found in the literature.

Uncertainties Governing Highly Automated Vehicle Fatality Rates Under Improve10

The initial fatality rate of HAVs under Improve10 is defined by the policy itself: HAVs 
are 10 percent better than the benchmark rate when introduced into the market. Over 
time, this rate improves as the state of the art in HAV safety improves and as the exist-
ing HAV fleet is upgraded to keep up. Although the best possible HAV safety rate is, 
in reality, uncertain, we treat it as constant, linking it to the notion of “near perfect” 
under the Improve75 and Improve90 policies. That is, under Improve10, the state of 
the art in HAVs changes from a 10-percent improvement over the benchmark rate 
to either a 75-percent or a 90-percent improvement over the benchmark rate (MAVS 
input 8), depending on the policy with which it is being compared. 

The rate of this improvement is also uncertain. MAVS defines it in terms of the 
cumulative number of miles of postdeployment HAV driving needed to improve from 
an initial to a final fatality rate (MAVS input 9). There is little real-world evidence that 
would help bound this number. As of December 2016, Tesla reportedly had logged 
1.3 billion miles of real-world driving data from vehicles equipped with its Autopilot 
hardware (Tesla, 2016) and, as of May 2017, Waymo had logged 3 million miles of 
driving (Waymo, undated). There is not reason to believe that either technology is 
many times better than human drivers, and there are not credible data about the rate at 
which performance is improving. Under an Improve10 policy, we explore over a large 
range of improvement rates, from 100 million to 10 trillion miles of cumulative postde-
ployment driving. Because we are concerned with orders of magnitude of miles needed 
to improve, we sample in this space logarithmically (rather than linearly as we do for 
other uncertainties). In other words, we take the same number of samples between 100 
million and 1 billion miles as we do between 1 billion and 10 billion miles.

Finally, while the state-of-the-art HAV fatality rate may improve at a particular 
rate, the extent to which the improvement can be diffused throughout the already-
deployed fleet is uncertain. This is determined by the upgradeability of the existing 
fleet, either through hardware and software updates to existing vehicles or through 
vehicle turnover. MAVS uses an upgradeability term (MAVS input 10). A lower 
bound of 0 represents no upgradeability of existing vehicles; that is, once an HAV 
is on the road, it remains on the road with the performance it had when it was first 
introduced. An upper bound of 1 represents perfect upgradeability of existing vehi-
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cles; that is, every HAV always performs at the state of the art level of safety. Neither 
of these is true to reality, and upgradeability is explored between these bounds under 
an Improve10 policy.

Accounting for Uncertainty Under Improve75 and Improve90 Policies 

For comparison, MAVS calculates HAV and non-HAV miles traveled and fatality rates 
in a future in which HAVs are introduced under policies requiring them to be 75 per-
cent and 90 percent safer than current vehicles. 

Uncertainties Governing Highly Automated Vehicle Miles Traveled Under 
Improve75 and Improve90

As with Improve10, annual highly automated VMT under Improve75 and Improve90 
depends on the timing of introduction, the timing of full diffusion, and the extent of 
use. Introduction (MAVS input 2) depends on when HAVs will reach the target safety 
performance of 75- or 90-percent improvement. Note that under an Improve10 policy, 
HAV developers have all the tools to improve HAVs as they would under Improve75 or 
Improve90, plus the additional tool of postdeployment learning, which is not available 
under these latter policies. This means that HAVs under Improve10 would reach target 
safety performance at the same time as or sooner than under Improve75 or Improve90. 
Thus, the soonest HAVs can be introduced under these latter policies is when they 
also reach target safety performance under Improve10. This is an endogenous variable 
in our model, determined by highly automated VMT and improvement rates under 
Improve10. In addition, however, if postdeployment learning is a particularly valuable 
tool, HAVs under Improve75 and Improve90 may not reach target performance until 
sometime after they would under an Improve10 policy. This delay is treated as exog-
enous and ranges from 0 to 15 years. A delay of zero years signifies that postdeployment 
learning has no value over other development methods (simulation, test driving, etc.), 
while a delay of 15 years suggests that postdeployment learning has significant value. 
The introduction year is thus the sum of the year in which Improve10 reaches target 
safety performance and an additional delay caused if improvement proves difficult 
without postdeployment learning.

We also do not know how long it will take for HAVs under Improve75 and 
Improve90 to be fully diffused (MAVS input 3), but we can define the duration rela-
tive to the diffusion time specified in the same future for Improve10. It is reason-
able that HAVs under Improve75 and Improve90 would not take more years to reach 
full diffusion than they would under Improve10, given that HAV performance under 
Improve10 is not nearly as good and consumers may be more uncertain or less ready 
to use the technology than they would under the other policies. Therefore, the upper 
bound of diffusion time is the same as the diffusion time under Improve10. 
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Instead, HAVs under Improve75 and Improve90 might reach full diffusion in 
fewer years because there may be latent demand for the technology because of a poten-
tial delay in introduction. However, we would not expect the HAVs to reach full 
diffusion before they would under Improve10 because, by the time HAVs are intro-
duced under Improve75 or Improve90, they have target safety performance under 
Improve10 as well. Therefore, the lower bound of diffusion time is the number of 
years until HAVs under Improve10 have been fully diffused, if full diffusion has not 
already occurred. Otherwise, it is one year. We specify a weight between 0 and 1 that 
explores between these bounds.

The uncertainties that govern HAV use (MAVS inputs 4 and 5) are defined the 
same way under all policies. Their values are also the same for all policies in any par-
ticular future.

Uncertainties Governing Highly Automated Vehicle Fatality Rates Under Improve75 
and Improve90

The initial fatality rate of HAVs under Improve75 and Improve90 is defined by each 
policy. As noted earlier, the best possible HAV fatality rate is uncertain, but, for sim-
plicity, we assume that the very definition of “near perfection” approaches a practical 
limit to HAV performance. Thus, HAVs under these policies do not improve over 
time. The final HAV fatality rate (MAVS input 8) is defined as the same as the ini-
tial HAV fatality rate (75 percent or 90 percent improved over benchmark), and the 
learning rate and upgradeability (MAVS inputs 9 and 10) do not apply to HAVs under 
these policies. 
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CHAPTER FOUR

Analytical Results

In this chapter, we use the model and methods described in Chapter Three to answer 
the first question posed in the introduction: Under what conditions are more lives 
saved by each policy in the short term and the long term, and how much are those sav-
ings? We first examine the results in the short term and then in the long term.

Under What Conditions Are More Lives Saved by Each Policy in the 
Short Term, and How Large Are Those Savings?

Figure 4.1 shows the difference in cumulative fatalities between Improve10 and 
Improve75 (Panel A) and between Improve10 and Improve90 (Panel B) across the 
ensemble of 500 cases in the short term, measured 15 years after initial deployment of 
HAVs under an Improve10 policy. Positive values indicate cases in which Improve10 
saves more lives cumulatively (shown in light blue when the savings are less than 50,000 
and in dark blue when savings exceed 50,000), while negative values indicate cases in 
which Improve75 or Improve90 saves more lives cumulatively (shown in red). 

These results show that an Improve10 policy saves more lives than the other poli-
cies under nearly every combination of conditions examined (476 of 500, or 95 per-
cent, of all cases when compared with Improve75; and 484 of 500, or 97 percent, of 
all cases when compared with Improve90).1 When compared with the savings under 
Improve75, the cumulative savings under Improve10 can reach nearly 200,000 lives; 
when compared with the savings under Improve90, Improve10 savings can exceed 
200,000 lives. More lives are saved in the latter comparison than the former because 
(1) the introduction of HAVs under Improve90 is delayed more than under Improve75, 
creating additional opportunity for HAVs introduced under Improve10 to save lives, 
and (2) HAVs introduced under Improve10 can achieve lower fatality rates under 
Improve90 than under Improve75, creating greater means for such HAVs to save lives. 

1 This should not be interpreted as an indicator of the likelihood of different life-saving outcomes, because the 
cases are not generated from an underlying probability distribution of inputs. The deep uncertainties preclude 
reliable probabilistic forecasting of uncertainties and outcomes.
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Figure 4.1
Ensemble Difference in Cumulative Lives Saved over 15 Years for 500 Cases
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Figure 4.2 shows that, in the short term, the difference in cumulative fatalities 
(vertical axis) is driven largely by how long it takes for HAVs to reach full diffusion 
under an Improve10 policy (horizontal axis). This is to be expected: Faster diffusion 
means that more miles can be driven sooner by safe HAV technology, leading to 
greater opportunities for fatality differences between the two policies. Conversely, if 
diffusion takes many decades, few VMT are driven by HAVs in either policy, result-
ing in a smaller potential difference. Each dot in the figure represents one of the 
500 cases.

There are a few conditions in which an Improve75 or Improve90 policy saves 
more lives than an Improve10 policy in the 15-year time frame. By 2035, the most 
cumulative lives saved by the larger improvement policies compared with Improve10 
is approximately 3,000, far fewer than the tens of thousands and sometimes hun-
dreds of thousands of lives that Improve10 saves under many of the conditions we 
examined.

Figure 4.2
Difference in Improve10 and Improve75 Cumulative Fatalities over 15 Years by Number of 
Years to Full Diffusion Under an Improve10 Policy
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The savings of up to 3,000 lives under an Improve75 or Improve90 policy occur in 
futures in which the fatality rate of HAVs introduced in the early years of an Improve10 
policy is not yet low enough to offset an increase in VMT resulting from HAV use. The 
slow improvement in the HAV fatality rate under Improve10 is, in turn, the result of 
a slow learning rate and relatively slow diffusion of the technology. Figure 4.3 shows 
this effect. Each mark in this figure is a future (or case) in which Improve75 has fewer 
cumulative fatalities than Improve10 by 2035. The size of each mark corresponds to 
the difference in cumulative fatalities. The figure shows that all of these futures have 
a 23 percent or larger increase in VMT as a result of HAV use (horizontal axis) and 
require 1 trillion miles or more of driving to achieve a 75-percent improvement in 
fatality rates over the benchmark rate. 

We can explore the effects of these factors in a single future. Case 117 shows that 
Improve75 saves 3,200 more lives than Improve10 does in the first 15 years after HAV 
introduction. The uncertainty parameter values in this case are shown in Table 4.1, and 
the next three figures show the impact of these values on annual VMT (Figure 4.4), 
fatality rate (Figure 4.5), and annual fatalities (Figure 4.6). 

Figure 4.3
Factors That Result in Fewer Cumulative Fatalities Under Improve75 Than Under Improve10 
over 15 Years
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The row for the “change in highly automated VMT as a result of HAV use” in 
Table 4.1 shows that, in this case, the diffusion of HAVs significantly increases VMT 
in this case.2 The effect of this increase can be seen in Figure 4.4, in which the use of 
HAVs under Improve10 (in blue) causes a significant increase in VMT 15 years after 
HAV introduction compared with Improve75 (in red), in which HAVs are not yet 
introduced, so no increase occurs. 

The row for “HAV miles needed to reach 99% of final HAV fatality rate” in 
Table 4.1 shows that it takes 6.9 trillion miles of postdeployment driving for state-of-
the-art HAVs under Improve10 to improve the annual fatality rate by 90 percent over 
benchmark. A slower pace of diffusion (35 years) means that these miles are gained 
slowly. The effect is evident in Figure 4.5, when 15 years after HAV introduction and 
1.6 trillion miles of cumulative HAV driving, the fatality rate of state-of-the-art HAVs 
(in orange) under an Improve10 policy has improved 50 percent over benchmark, but 
it still remains below the 75-percent improvement that constitutes best performance 
under this policy. The effective improvement across the entire Improve10 fleet (HAVs 
and non-HAVs, shown in blue) is approximately 15 percent because most vehicles are 

2 Specifically, in this future, for each vehicle mile driven by humans in the baseline case that is driven by an 
HAV in a future with HAVs (Improve10 or Improve75), 0.97 additional miles are driven by HAVs as a result of 
increased demand for travel.

Table 4.1
Uncertainty Parameter Values in Case 117

MAVS 
Input

Improve10 or 
Improve 75 Uncertainty Value

Range 
Evaluated

1 Both Year-over-year VMT growth among non-HAVs 0.56% 0.4%–1.8%

2 Improve75 Years of delay in introducing HAVs under Improve75a 
(used to calculate Initial year of HAV introduction)

8 0–15

3 Improve10 Years to full diffusion of HAVs under Improve10 37 20–50

3 Improve75 Increase in pace of HAV adoption under Improve75a  
(used to calculate years to full diffusion of HAVs) 

0.59 0–1

4 Both Maximum percentage of baseline non-HAV miles that 
would be driven by HAVs at full diffusion

60% 50%–100%

5 Both Change in highly automated VMT as a result of HAV use 97% –50%–100%

6 Both Change in non-HAV fatality rate in 50 years 0.81 0.5–1.1

9 Improve10 HAV miles needed to reach 99% of final HAV fatality 
rate

6.9 trillion 100 million– 
10 trillion

10 Improve10 Upgradeability of already deployed HAVs 0.58 0–1

a As described in Chapter Three, these uncertainty parameters are not directly used in MAVS but are 
instead used to calculate the indicated MAVS input.
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Figure 4.4
Annual VMT in Case 117
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Figure 4.5
Improvement in Fatality Rate in Case 117
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Figure 4.6
Annual Fatalities in Case 117
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still not highly automated, and because there are older HAVs still in operation with 
performance that does not meet the state of the art. The fatality-rate improvement 
under Improve75 (in red) is even lower, at 7 percent, because no HAVs have been intro-
duced. (It is improving nonetheless because non-HAV fatality rates decrease in this 
future.) This is the same rate that would be seen in a future without HAVs.

Figure 4.6 shows that the combination of the high VMT and the not-high-
enough improvement in fatality rate can increase annual fatalities compared with 
having no HAVs at all. In case 117, this increase does not occur under the Improve75 
policy because the introduction of HAVs is delayed until the fatality rate is significantly 
better and can offset the impact of higher VMT. The figure also shows that, under an 
Improve10 policy, early-year increases in fatalities are offset in later years as HAV safety 
performance improves and the deployment of these improved HAVs grows. By 2040, 
there are fewer annual fatalities under Improve10 than under Improve75. 

To summarize, in the short term (15 years after introduction), more lives are 
cumulatively saved under an Improve10 policy than an Improve75 or Improve90 policy 
under nearly all conditions, and those savings can be significant—tens of thousands 
to hundreds of thousands of lives. The savings are particularly large when HAVs under 
Improve10 are adopted quickly. Conversely, the more stringent policies save more lives 
only when HAVs introduced under Improve10 lead to large VMT increases that are not 
offset by correspondingly rapid improvements in the HAV fatality rate. However, even 
under these conditions, the short-term life savings under Improve75 and Improve90 
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policies are relatively small (approximately 3,000 lives over 15 years) and disappear over 
time as HAV fatality rates continue to improve under an Improve10 policy.

Under What Conditions Are More Lives Saved by Each Policy in the 
Long Term, and How Large Are Those Savings?

We now focus on the longer-term savings—those occurring 30 years after initial 
deployment of HAVs under an Improve10 policy. Figure 4.7 shows the difference in 
cumulative fatalities between Improve10 and Improve75 across the ensemble of cases 
in the longer term, measured in the year 2050. As in Figure 4.1, positive values (shown 
in blue) indicate that Improve10 saves more lives cumulatively, while negative values 
indicate that Improve75 saves more lives cumulatively. 

As Figure 4.7 shows, over 30 years, there are more cumulative lives saved under 
Improve10 than Improve75 under every combination of future adoption and perfor-
mance conditions that we examined. In other words, we could not find a plausible set 
of conditions in which waiting for significant safety improvements saved more lives 
in the long run. Moreover, the cost of waiting for those significant improvements 
can be very large—in some cases, more than half a million lives. This represents 

Figure 4.7
Ensemble Difference in Cumulative Lives Saved over 30 Years for 500 Cases, Improve10 
Versus Improve75
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up to 83 percent more fatalities than would be seen over the same period under a 
Improve10 policy.

The difference in life savings between Improve10 and Improve90 follows a very 
similar pattern (which, for brevity, we do not show in a figure). Improve10 saves more 
lives in every future examined, and the difference can reach 700,000 lives in the most-
extreme cases. Thus, Improve90 has 116 percent more fatalities than would be seen 
over the same period under an Improve10 policy.

As in the short term, the magnitude of the difference in fatalities is driven 
primarily by how many more highly automated miles are driven under Improve10 
than under Improve75 or Improve90. In the longer term, the difference in VMT 
and therefore cumulative fatalities is smallest in futures in which HAVs are intro-
duced under both policies nearly simultaneously. Figure 4.8 shows that this gener-
ally occurs when (1) the number of miles it takes to achieve full improvement under 
Improve10 (that is, a 10-percent improvement in the fatality rate over the benchmark 
rate) is small (horizontal axis) and (2) the same improvement can be achieved equally 
quickly in laboratory or simulation settings, rather than through deployment, and 
therefore there is little or no delay in introducing HAVs under an Improve75 or 
Improve90 policy (vertical axis). As before, futures with a greater difference in fatali-
ties are represented by larger circles in the figure; in this case, the differences repre-

Figure 4.8
Differences in Cumulative Fatalities Between Improve10 and Improve75 or Improve90 over 
30 Years Given Two Conditions
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sent how many more cumulative fatalities an Improve75 or Improve90 policy leads 
to over 30 years compared with an Improve10 policy. Futures in which the difference 
in fatalities is 50,000 or fewer are shown in solid red circles; futures in which the 
difference is greater than 300,000 are shown in solid blue circles; and futures with 
differences in between these thresholds are shown in open gray circles. As mentioned 
earlier, there are more cumulative fatalities under Improve75 and Improve90 than 
under Improve10 in the long term in all cases.

This reveals that a difference of 50,000 or fewer fatalities occurs when it takes 
fewer than 10 billion (109) miles of driving to improve safety performance and when 
the additional delay in HAV introduction under Improve75 or Improve90 is five years 
or less. An increase in fatalities of 300,000 occurs in many cases when it takes 100 bil-
lion or more miles of driving and when the additional delay in introduction is ten years 
or more. Such a large increase can also occur when learning is fast but the delay is large, 
or vice versa, indicating that there is a trade-off between these factors.

There are, of course, other factors at play that create variation in these outcomes. 
Factors that allow for more highly automated VMT (such as larger increases in overall 
VMT and greater use of HAVs) allow for larger differences in life savings from HAVs 
under Improve10 versus Improve 75. In contrast, poor upgradeability diminishes this 
difference because legacy vehicles with poorer safety performance remain in operation. 
Nevertheless, our analysis reveals that these factors are not the primary drivers of dif-
ferent outcomes between these policies. 

To summarize, in the longer term, more lives are cumulatively saved under an 
Improve10 policy than either an Improve75 or Improve90 policy under all combina-
tions of conditions we explored, and those savings can be significant—hundreds of 
thousands of lives in many cases and more than half a million lives in others. The 
savings are largest when the introduction of HAVs under Improve75 or Improve90 is 
significantly delayed because (1) the miles it takes to improve HAVs from better than 
the average human to nearly perfect is large and (2) the same improvement cannot 
be achieved equally quickly in laboratory or simulation settings. Savings are smallest 
when the opposite conditions hold.
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CHAPTER FIVE

Policy Implications and Conclusions

Chapter Four presented the analytic results that identify the conditions under which 
more lives are saved by each policy in the short term and the long term, and how large 
those savings are. In the short term (within 15 years), more lives are cumulatively saved 
under a more permissive policy (Improve10) than stricter policies requiring greater 
safety advancements (Improve75 or Improve90) in nearly all conditions, and those 
savings can be significant—hundreds of thousands of lives. The savings are largest 
when HAVs under Improve10 are adopted quickly. Conversely, the more stringent poli-
cies save more lives only when the introduction of HAVs would lead to large VMT 
increases that are not offset by correspondingly rapid reductions in the HAV fatality 
rate under Improve10. However, even under these conditions, the short-term life sav-
ings under the stringent Improve75 or Improve90 policies are relatively small (at most, 
roughly 3,000 lives cumulatively) and disappear over time as HAV fatality rates con-
tinue to improve under an Improve10 policy. 

In the long term (within 30 years), more lives are cumulatively saved under an 
Improve10 policy than either Improve75 or Improve90 policies under all combina-
tions of conditions we explored. Those savings can be even larger—in many cases, 
more than half a million lives. The savings are largest when the introduction of HAVs 
under Improve75 or Improve90 is significantly delayed because (1) the number of 
miles it takes to achieve 10-percent improvement in the fatality rate over benchmark 
under Improve10 is large and (2) the same improvement cannot be achieved equally 
quickly in laboratory or simulation settings. Savings are smallest when the opposite 
conditions hold.

This chapter now explores the second and third questions posed by this study:

2. What does the evidence suggest about the conditions that lead to small costs 
from waiting for technology that is many times safer than human drivers?

3. What does this imply for policies governing the introduction of HAVs for con-
sumer use?
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What Does the Evidence Suggest About the Conditions That Lead to 
Small Costs from Waiting for Technology That Is Many Times Safer 
Than Human Drivers?

The fact that most futures we examined have high costs of waiting for significantly 
improved HAVs does not necessarily mean that this is the most likely consequence 
of waiting, because the futures are not probabilistically generated. This is because the 
factors that shape fatalities under each policy are deeply uncertain, and probabilities 
cannot be assigned to any particular outcome. Consistent with RDM, the futures are 
used to identify the conditions that lead to different policy outcomes, without a priori 
assumptions about the likelihood of each future.

Given this, it is more appropriate to ask whether there is evidence to suggest that 
the conditions that lead to a small or no cost of waiting for HAVs that are much better 
than human drivers are more plausible than those that lead to higher cost. In other 
words, do we have reason to believe that the pace of HAV improvement will be fast, 
or that there is little value of postdeployment learning? If so, then one might still favor 
waiting for HAVs until major safety improvements are achieved. 

First, there is no evidence to suggest that improvement of HAVs from just-better-
than-average humans to many times better will be quick, whatever the tools and tech-
niques available. Commercial development of the technology began several decades 
ago and has been under way in earnest for roughly the past decade, with nearly every 
major automaker developing the technology. While it is unclear at this time whether 
HAVs today are better or worse than the average human driver, many industry leaders 
believe that the industry is a long way from reaching significant improvements: 

“[N]one of us in the automobile or [information technology] industries are close to 
achieving true level 5 autonomy. Collectively, our current prototype autonomous 
cars can handle many situations. But there are still many others that are beyond 
current machine competence. It will take many years of machine learning and 
many more miles than anyone has logged of both simulated and real-world testing 
to achieve the perfection required for Level 5 autonomy.” (Pratt, 2017)

Simultaneously, research on technology improvement across industries suggests 
that there is a power-law relationship between production and performance: A dou-
bling of production leads to a constant improvement in performance (as measured 
by cost or other characteristics) (Nagy et al., 2013). A similar relationship may exist 
for the performance of machine learning algorithms and data sets (Sun et al., 2017). 
For HAVs, this suggests that achieving gains that some might consider “near perfect” 
may take much more effort and time than reaching better-than-average human perfor-
mance, which may itself be still out of reach. 

Second, there is no reason to believe that the value of real-world driving to HAV 
improvement is small. Real-world driving is a huge part of the development effort, as 
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indicated by the 36 companies that have registered to date with the California Depart-
ment of Motor Vehicles to conduct testing on public roads (California Department of 
Motor Vehicles, undated). Alternatives—simulations and closed courses—are comple-
mentary but cannot replace real-world driving. Thus, there is not a compelling reason 
to believe that the difference in the timing of introduction of HAVs under the two 
policies would be small. 

In sum, our analysis suggests that a policy of waiting for HAVs to be many times 
better than human drivers or nearly perfect would be costly in terms of human lives. 
Just how costly? It may vary significantly—from tens of thousands to hundreds of 
thousands of lives over time, depending on how the technology and its diffusion evolve. 

What Does This Imply for Policies Governing the Introduction of 
Highly Automated Vehicles for Consumer Use?

In a utilitarian society, our findings would imply that policymakers should allow and 
developers should deploy HAVs when their safety performance is better than that of 
the average human driver. However, we do not live in a utilitarian society (Bonnefon, 
Shariff, and Rahwan, 2016). Thus, for example, a major backlash against a crash caused 
by even relatively safe HAVs could grind the industry to a halt—resulting in potentially 
the greatest loss of life over time. As another example, public outcry over technology 
failures is sometimes the force behind industry making further safety improvements 
that might otherwise be overlooked.1 

Instead, our findings suggest that there are real and large costs to waiting for 
nearly perfect technology and that society—including the public, policymakers, the 
judicial system, and the transportation industry—must balance the social response 
to HAV crashes with the rate of HAV crashes under different policy options. The evi-
dence in this report can help stakeholders find a middle ground of HAV performance 
requirements that may prove to save the most lives overall.

1 Airbags offer such an example. Airbags helped save the lives of many adult male passengers but also injured 
and killed some smaller-statured passengers. The public and policymakers demanded improvements to the tech-
nology, spurring the development of the smarter airbags found in vehicles today (Houston and Richardson, 
2000). 
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How safe should highly automated vehicles (HAVs) be before they are allowed on the roads 
for consumer use? This question underpins much of the debate around how and when to 
introduce and use the technology so that the potential risks from HAVs are minimized and the 
benefits maximized. In this report, we use the RAND Model of Automated Vehicle Safety to 
compare road fatalities over time under (1) a policy that allows HAVs to be deployed for 
consumer use when their safety performance is just 10 percent better than that of the average 
human driver and (2) a policy that waits to deploy HAVs only once their safety performance 
is 75 or 90 percent better than that of average human drivers—what some might consider 
nearly perfect. We find that, in the long term, under none of the conditions we explored does 
waiting for significant safety gains result in fewer fatalities. At best, fatalities are comparable, 
but, at worst, waiting has high human costs—in some cases, more than half a million lives. 
Moreover, the conditions that might lead to comparable fatalities—rapid improvement in 
HAV safety performance that can occur without widespread deployment—seem implausible. 
This suggests that the opportunity cost, in terms of lives saved, for waiting for better HAV 
performance may indeed be large. This evidence can help decisionmakers better understand 
the human cost of different policy choices governing HAV safety and set policies that 
save more lives.
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